

2016 Marking Scheme

Grade	Mark Re	equired	° condidates achieving anada			
Awarded	(/ ₁₃₀)	%	% candidates achieving grade			
A	91+	70.0%	34.3%			
В	78+	60.0%	27.8%			
С	65+	50.0%	20.8%			
D	58+	44.6%	8.2%			
No award	<58	< 44.6%	8.8%			

Section:	Multiple Cho	ice	Extended A	nswer	Investige	ation
Average Mark:	20.9	/30	42.2	/70	19.2	/30

20	2016 Adv Higher Chemistry Marking Scheme						
MC Qu	Answer	% Pupils Correct	Reasoning				
1	С	85	EM Radiation Gamma X-ray UV Visible Infrared Microwave Radio & TV Velocity 3x10 ⁸ m s ⁻¹ Wavelength short				
2	В	92	A Hund's Rule: Electron half-fill degenerate orbitals before doubly-filling orbitals B Aufbau Principle: Electrons fill in order of increasing energy C Pauli Exclusion Principle: Orbital can hold 2 electrons only and they have opposite spins D Valence Shell Electron Pair Repulsion Theory: predicts geometry of molecules				
3	С	94	$\blacksquare A$ s-block is group 1 \rightarrow group 2 $\blacksquare B$ p-block is group 3 \rightarrow group 0 $\square C$ d-block is the transition metals $\blacksquare D$ f-block is the Actinide and Lanthanides rows at the bottom of the Periodic Table				
4	D	64	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
5	С	67	 ▲A [Cu(CN)₆]⁴⁻ complex is a negatively charged ∴ cuprate complex ▲B [Cu(CN)₆]⁴⁻ complex is a negatively charged ∴ cuprate complex ▲C Cu²⁺ central ion and 6×CN⁻ ligands gives 4- charge over complex ▲D Cu⁴⁺ central ion and 6×CN⁻ ligands gives 2- charge over complex 				
6	A	83	$\begin{array}{cccc} HCN & + & H_2O & \Longrightarrow & H_3O^+ & + & CN^- \\ Acid & Base & Conjugate acid & Conjugate base \end{array}$				
7	С	49	IA strong acid/weak base ∴ rapid area of pH change at neutralisation point B strong acid/strong base ∴ rapid area of pH change at neutralisation point IC weak acid/weak base ∴ pH change at neutralisation point is gradual D weak acid/strong base ∴ rapid area of pH change at neutralisation point				
8	A	59	⊿A ammonia forms the weak alkali ammonium hydroxide to complete the buffer B ethanoic acid is a weak acid but a weak alkali (NH₄OH) required to complete butter C potassium chloride is a second salt but there is no weak alkali to complete buffer D ammonium sulphate is a second salt but there is no weak alkali to complete buffer				
9	A	39	 ☑A 4Cl(i) is not the natural state of chlorine Cl_{2(g)} ☑B 1 mol of magnesium oxide MgO formed from its elements in their natural state ☑C 1 mol of methanol CH₃OH formed from its elements in their natural state ☑D I mol of ethane C₂H₆ formed from its elements in their natural state 				
10	С	69	 ☑A Gaseous neon (b.pt.=-246°C) has higher entropy (disorder) than solid sulphur ☑B Liquid mercury (m.pt.=-39°C) has higher entropy (disorder) than solid sulphur ☑C Solids have lower entropy/disorder than liquids or gases. (sulphur m.pt. =115°C) ☑D Liquid phosphorus (m.pt.=44°C) has higher entropy (disorder) than solid sulphur 				
11	В	70	Rate = k [A] [B] ² \therefore Reactant A is first order and Reactant B is second order \therefore 1 particle of A and 2 particles of B participate in the (slow) rate determining step \therefore slow (rate determining) step is A + 2B \rightarrow X				

12	D	92	Bond $C - C$ $C = C$ $C - H$ $12xC - H$ $4xC - C$ $+$ $2xC = C$ Sigma σ 1 1 1 $=$ (12σ) $+$ (4σ) $+$ $(2\sigma + 2\pi)$
13	С	71	 Pi π 0 1 0 - 100 - 2π A molecule drawn is cis-3-methylhept-4-ene-2-one B molecule drawn is trans-3-methylhept-4-ene-2-one C molecule drawn is trans-5-methylhept-3-ene-2-one D molecule drawn is cis-5-methylhept-3-ene-2-one
14	D	85	 A ethanol C₂H₅OH has an -OH hydroxyl group which has hydrogen bonding B ethylamine C₂H₅NH₂ has an -NH₂ amine group which has hydrogen bonding C ethanoic acid CH₃COOH has a -COOH carboxyl group which has hydrogen bonding D ethoxyethane is an ether which shows no hydrogen bonding between molecules (but will exhibit hydrogen bonding when mixed with water due to the similar shape to water molecules)
15	В	67	 A longer chain length has lower volatility due to increased London Dispersion Forces B longer chain length has lower volatility and lower solubility C longer chain length has lower volatility due to increased London Dispersion Forces D longer chain length has lower solubility due to longer non-polar hydrocarbon chain
16	D	42	H H H H H H H H H H H H H H H H H H H
17	A	83	 ☑A Methanal (R' = H) would produce ethanol (primary alcohol) ☑B Ethanal (R' = CH₃) would produce propan-2-ol (secondary alcohol) ☑C Propanal (R' = C₂H₅) would produce butan-2-ol (secondary alcohol) ☑D Butanal (R' = C₃H₇) would produce pentan-2-ol (secondary alcohol)
18	D	77	 A hydration: adding water across a C=C double bond B hydrolysis: adding water across the break as molecule splits into two C dehydration: removing water and creating a C=C double bond D condensation: two molecules join together and water is removed as they join
19	A	73	 Markovnikov's Rule states the hydrogen mostly add to the side of the double bond which already contains the most hydrogen atoms. In but-1-ene, C1 contains 2 hydrogens and C2 contains 1 hydrogen H of H-Cl mostly adds to C1 and Cl of H-Cl mostly adds to C2 2-chlorobutane is main product and 1-chrlorobutane is the minor product.
20	С	60	$\begin{array}{c cccccc} H & H & H & H & H & H & H & H & H & H $

			Ð			Δ		•
21	C	05	redu	uction	dehydration	9	addition	U
21	C	20	propanone —	→ propan-2-ol	──► pr	opene -		1-chloropropane
			(Ketone)	(Secondary Alcohol)		(Alkene)		(Halogenalkane)
			⊠A Benzene is a	flat planar molecule				
22	D	68	S Benzene Take	s part is electrophil	IC SUDSTITUT	ion reactions	ons	
	U		MC All carbon to	carbon bonds are tr	ie same ieng	ith in Denz	zene ve by edd	dition praction
			∑A In Sul reacti	ons there is only on	e molecule i	in the rate	e detern	nining step (CH2)2(Br
<u></u>		1.4	B No change to	reaction rate as OH	t ion is zero	order an	d does r	not take part in RDS
23	A	61	SC No change to	reaction rate as Of	t ion is zero	o order an	d does n	not take part in RDS
			ED No change to	reaction rate as Of	t ion is zero	o order an	nd does r	not take part in RDS
			1 st adjacent					
			hydrogen	- H H C)		This	s is not an adjacent
			2 nd adjacent	->LJ			to	the same carbon
			hydrogen		-0-11			
			hydrogen					
24	C	45						
L 1		ΤJ						
			SINGLET	DOUDIET	I ripiet	ens 3 adjac	arupie	r quintupiet
				top of molecule rec	wired in bot	h noradre	enaline a	nd nhenvlenhrine
05			B 2 nd H atom on	N not required as r	henvlephrin	ne lacks th	nanne u Nis H ata	om (has -CH3instead)
25	D	10	EC-OH group on	benzene ring requir	red to direc	tly stimulo	ate the r	receptor
			☑D pharmacopho	re (structural fragn	nent) for dir	rectly stin	nulating	the receptor
24	D	11	200ppm = 200 parti	cles in every million po	articles			
26	В	60		∴ mass = 200	$\frac{1}{100} \times 134g =$: 0.0268g 2	26.8mg	
			🗷 A corrosive sub	stances can be used	l as a primar	rv standar	d with c	are
			B primary stand	lards should be read	lily soluble i	n water		
27	D	82	EC primary stand	lards must have a hi	, gh degree o	f purity		
	U		☑D if a substance	e readily absorbs wo	iter then its	s changing	mass m	akes it unsuitable as
			a primary sta	ndard				
	-		n o. of mol NO3 ⁻ = v o	lume x concentration	= 0.5 litre x 0	.1 mol l ⁻¹ = (0.05mol N	NO_3^- ions
28	B	44	DUT 2 NO3 IONS DE	er Ca(NU3)2 f.u. ∴U. no of moles	0.025	10 ns $\rightarrow 0.1$	025moi	$Ca(NO_3)_2$ f.u.
			v	olume = <u>c</u> oncentration	$= \frac{0.010}{0.25}$ m	$\frac{100}{100} = 0.1$	litres = 10	00cm ³
			1mol BaSO4 = (1x13)	7.3)+(1×32.1)+(4×16) =	137.3+32.1+6	64 = 233.4g	1	
				no of mol = -	mass 2	2.33 =0.01	Omol	
				N 0. 01 MOI -	gfm 23	33.4 -0.01	onior	
29	Α	63		CuSO ₄ + BaC	2	BaSO4 +	CuCl ₂	
-	• •			1mol 0.010mol		1mol 0.010mol		
			1mol CuSO4 = (1x63	5)+(1x32.1)+(4x16) = 6	53.5+32.1+64	= 159.6g		
			m ass = no. of mol	× gfm = 0.01mol × 15	59.6g mol ⁻¹ =	: 1.59g		
			n o. of mol = v olum	e x c oncentration =	0.02litres x	: 4.0 mol l	⁻¹ = 0.08	mol
20		70		NH₃ + HN	103	► NH4N	D 3	
30 B	В	B 79		1mol 1n	nol	1mol		
			0 02mal D+/NUL	U.U8mol		0.08mo √-1	1	
1		1			I VI INI 13	AT 1		

2016 Adv Higher Chemistry Marking Scheme						
Long Qu	Answer	Reasoning				
1a(i)	-44 kJ mol ⁻¹	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)}$ $= (1x-278) - (1x52)+(1x-286)$ $= -278 - 52 + (-286)$ $= -278 - (-234)$ $= -44 \text{ kJ mol}^{-1}$				
1a (ii)	-128 J K ⁻¹ mol ⁻¹	$\Delta G^{\circ} = \Sigma G^{\circ}(\text{products}) - \Sigma G^{\circ}(\text{reactants})$ $= (1x-175) - (1x68)+(1x-237)$ $= -175 - 68 + (-237)$ $= -175 - (-169)$ $= -6 \text{ kJ mol}^{-1}$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \therefore T\Delta S^{\circ} = \Delta H^{\circ} - \Delta G^{\circ} \therefore \Delta S^{\circ} = \frac{\Delta H^{\circ} - \Delta G^{\circ}}{T}$ $\Delta S^{\circ} = \frac{-44 - (6)}{298}$ $= -0.128 \text{ kJ K}^{-1} \text{ mol}^{-1}$ $= -128 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$				
1b	344K	The reaction becomes thermodynamically feasible when $\Delta G^{\circ} = 0$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore T\Delta S^{\circ} = \Delta H^{\circ} \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-44 \times 1000 \text{ J mol}^{-1}}{-128 \text{ J K}^{-1} \text{ mol}^{-1}} = 343.75 \text{ K}$				
2a	1s²2s²2p ⁶	Neon atoms have 10 electrons. (2+2+6=10) Neon is a Noble Gas has full orbitals (s holds 2 electrons and p holds 6 electrons)				
2b	∞	Angular Momentum Quantum Number has value of l=0, 1, 2 or 3 for s, p, d and f respectively. When l=1 the shape of the orbital is the p orbital. p_x , p_y and p_z orbitals all have a <i>figure of 8</i> shape (∞).				
2c	-1,0,+1	 10th electron is a p orbital electron where l=1 l is angular momentum quantum number magnetic quantum number m has values -l through to +l If l=1 then m_l can have values -1,0,+1 				
3a (i)	Energy	Fe electronic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ² ∴ Fe ²⁺ has electronic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ To be paramagnetic there needs to be unpaired electrons. As [Fe(CN) ₆] ⁴⁻ is not paramagnetic ∴ it has no unpaired electrons Only formation of the six electrons in the 3d orbital without any unpaired electrons would be 3 electron pairs in the lower orbitals.				
3 a (ii)	Answer to include:	 1st Mark: Smaller energy gap (due to H2O being lower in spectrochemical series) 2nd Mark: electrons are promoted to higher d-orbitals by absorbing energy from visible spectrum 				
3a(iii)	Fe ³⁺ has five electrons in d-orbital	Fe ³⁺ has electronic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ . With an odd number of d-orbital electrons there will always be at least one unpaired electron in any formation of electrons.				
3b(i)	4	The haemoglobin structure has four nitrogen atoms whose lone pairs of electrons are attracted to the central Fe^{2+} ion.				
3b(ii)	One answer from:	Flame test Atomic absorption Atomic emission				

		3 mark answar		2.	norte onewon		1 monte ongevon	
3b(iii)	Open question answer to include	3 mark answ Demonstrates a <u>good</u> understanding of the ch involved. A good compre the chemistry has provided logically correct, includi statement of the princip involved and the application these to respond to the	wer hension of ded in a ng a ples tion of problem.	2 r Demonstra understan involved, n statement the situat problem is	MARK ANSWEP ates a <u>reasonable</u> ding of the chemistry naking some (s) which are relevant to ion, showing that the understood.	I mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.		
4a (i)	The exact mass should be measured accurately and should be close to 4.25g.	The mass does not have to be exactly 4.25g for the experiment and depending on the particle size of the solid it may not be possible to exactly measure out 4.25g on the balance. It is vitally important that the actual mass measured is recorded and used to calculate the number of moles of silver nitrate for use in the calculation.						
4 a(ii)	Answer to include:	1 st Mark: Dissolve silver nitrate in deionised water in a beaker. Transfer solution and beaker rinsings to standard flask 2 nd Mark: Make solution up to the mark on standard flask with deionised water						
4 a(iii)	One answer from:	Use lower co silver nitr Dilute the s nitrate	oncentrat rate solut standard s e solution	ion of ion silver	Titrate a larger sa of seawater Dilute the sea wa less	mple ter	Use a microburette Use class A glassware	
4b(i)	Filtration under suction	A Buchner funne the liquid throug Your answer mus	l is used h the fil t mentio	with suc ter leav n suctio	ction pump to ass ing the precipitat n	ist th e on	he movement of the filter paper.	
4b(ii)	One Answer from:	To check reaction is complete	To ch chloride rea	eck all ions have cted	To check no more precipitate is formed	If th ther	nere is a precipitate a the reaction is not complete	
4c	Titrations suitable for lower concentrations of chloride ions	The gravimetric method would produce very little precipitate and the errors involved in such small quantities would be large. Volumetric methods are much more accurate with smaller quantities.						
5α	Answer showing:	$K_{a} = \frac{[C_{6}H_{5}CH(OH)COO^{-}][H_{3}O^{+}]}{[C_{6}H_{5}CH(OH)COOH]}$ NB: H ₂ O is both a reactant and the solvent so [H ₂ O] = 1						
5b(i)	0.658	$1 \text{mol } C_6H_5CH(OH)COOH = (8\times12)+(8\times1)+(3\times16) = 96+8+48 = 152g$ $\mathbf{n}_0. \text{ of mol} = \frac{\mathbf{m}_{ass}}{\mathbf{gfm}} = \frac{10g}{152 \text{ g mol}^{-1}} = 0.0658 \text{ mol}$ $\mathbf{c}_{oncentration} = \frac{\mathbf{n}_0. \text{ of mol}}{\mathbf{v}_{olume}} = \frac{0.0658 \text{ mol}}{0.1 \text{ litres}} = 0.658 \text{ mol } 1^{-1}$						
5b(ii)	1.97	рН	= = = <u>1</u> 2(- = =	¹ / ₂ pK _a ¹ / ₂ (-log ₁₀ log ₁₀ 1.78 ¹ / ₂ (3.75 1.875 1.97	$\frac{1}{2} - \frac{1}{2}$ $\frac{1}{2}$	ilog10 ilog10 og10(0 (0.18 0.090	c c 0.658) 2) 09)	
6a	196.3 kJ mol ⁻¹	$E = \frac{L \times h \times \lambda}{\lambda}$	<u>c</u> = <u>6</u> = 19 = 19	96291 J 96.3 kJ	¹³ mol ⁻¹ × 6.63×10 ⁻¹ 610 × 10 ⁻¹ mol ⁻¹ mol ⁻¹	⁻³⁴ J : ⁹ m	<u>s x 3x10⁸ m s⁻¹</u>	
6b(i) Part A	2 nd order	Experiment	[ClO ₂] x2	[OH ⁻] no change	Effect on Rate x4	Orde	er of Reactant [ClO2] ²	
6b(i) Part B	1 st order	0 + 0	no change	x3	x3		[OH ⁻] ¹	

6b(ii)	Rate = $k[C O_2]^2[OH^-]$	Rate = k x [ClO ₂] ² x [OH ⁻] ¹ = k[ClO ₂] ² [OH ⁻]				
6b(iii)	230 l² mol ⁻² s ⁻¹	rate = $k[ClO_2]^2[OH^-]$ $k = \frac{rate}{[ClO_2]^2 \times [OH^-]}$ $= \frac{2.48 \times 10^{-2} \text{ mol } l^{-1} \text{ s}^{-1}}{(6.0 \times 10^{-2} \text{ mol } l^{-1})^2 \times 3.0 \times 10^{-2} \text{ mol } l^{-1}}$ $= 230 l^2 \text{ mol}^{-2} \text{ s}^{-1}$				
7a	Ethanal (keto form)	As the value of K is well below 1 the equilibrium must lie well to the left.				
7b(i)	$H_{3}C \xrightarrow{H} CH_{3}$ $H_{3}C \xrightarrow{C} CH_{2} O$	A chiral carbon centre is a carbon with four different groups attached to the same carbon				
7b(ii)	A racemic mixture is formed over time	The keto form converts into the enol form due to the equilibrium but will then convert back to the keto form again. When the enol form converts back to the keto form both enantiomers are formed an the previously optical-activity is lost as a racemic mixture forms.				
7b(iii)		Skeletal structures have a carbon atom at the end of every line and corner unless another atom/group is indicated in the structure.				
7c	Diagram showing:	$H_{3}C \xrightarrow{H} CH_{3} \xrightarrow{C} H_{3}C \xrightarrow{H} CH_{3} \xrightarrow{H_{3}C} CH_{2} \xrightarrow{H} CH_{3} \xrightarrow{H_{3}C} CH_{2} \xrightarrow{H^{+}} CH_{3} H$				
8a	Produces response similar to the body's natural active compound	 Every pharmacologically-active substance has a part of the molecule which has a specific shape which fits the receptor. Agonists and the natural substrate cause a biological response inside the cell. Antagonists fit the binding site of the receptor but do not cause the biological response and prevent any other chemical doing so. 				
8b	Catalyst	AlCl $_{3}$ is not a reactant in the reaction. It must be acting as a catalyst.				
8c	ultra violet (U.V.)	Free radical chain reaction mechanism for the substitution reaction of a bromine atom requires u.v. light for the initiation step of $Br_2 \rightarrow 2Br^{\bullet}$				
8d	nucleophilic substitution	The C-Br bond is polar with the δ -charge on the bromine end of the bond. The δ -charge on the N of the incoming molecule is attracted to the C atom of the C-Br and the Br atom leaves the bond as a Cl ⁻ ion.				
8e	Lithium aluminium hydride	$\begin{array}{c c} \mbox{Lithium Aluminium Hydride LiAlH}_4 \mbox{ is a reducing agent which will carry out} \\ \hline \mbox{reduction reactions:} \\ \hline \mbox{aldehyde} & \rightarrow & \mbox{primary} \\ \hline \mbox{alcohol} & \mbox{ketone} & \rightarrow & \mbox{secondary} \\ \hline \mbox{alcohol} & \mbox{carboxylic} \\ \hline \mbox{alcohol} & \mbox{aldehyde} \end{array} \\ \hline \end{array}$				
8f	Open Question to include:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the problem is understood.				

9 a(i)	C9H10O3	H H H $H H H$ $H H H$ $H H H$ $H H H$ $H H$						
9a (ii)	sp²	Aromatic rings have sp ^c hybridisation as the 2s and two of the three 2p orbitals hybridise. The remaining 2p orbital is unhybridised and the electron in this orbital delocalises into the ring of 6 electrons.						
9a (iii)	orbitals overlap sideways	The unhybridised p orbital on either side of the central sigma bond bend and overlap to form a Pi bond (second bond in a double bond)						
9 b(i)	Diagram showing:	Cross-sectional diagram showing inner wall of condenserBe an open systemSealed around the flask neckHave water going into the bottom and out at the top						
9b(ii)	Products are soluble	The products of hydrolysing an ester are soluble as the both contain polar groups that make the products soluble. When all the ester is hydrolysed then there is only the water soluble layer left.						
9b(iii)	Answer to include:	<u>1st Mark</u> : 4-hydroxybenzoate ion removes H [*] by joining together to form molecules of 4-hydroxybenzoic acid <u>2nd Mark</u> : water equilibrium shift to right to replace H [*] ions and this increases the OH ⁻ ions making pH>7						
9b(iv)	Any two from:	Doesn't react More soluble in hot Impurities to be soluble Boiling with solute solvent than cold solvent /insoluble in hot/cold solvents polarity						
9b(v)	3.85g	Percentage yield 77.5% 2.48g 4-hydroxybenzoic acid Percentage yield 100% 2.48g x ¹⁰⁰ / _{77.5} = 3.20g ethylparaben 1mol 1mol 1mol 166g 138g 166g x ^{3.20} / ₁₃₈ 3.20g = 3.85g						
10a	$C_3H_4O_2$	$\begin{array}{ c c c c c c }\hline Element & C & H & O \\ \hline \% & 50.0 & 5.60 & 44.4 \\ \hline \% & 50.0 & 5.60 & 44.4 \\ \hline No. of moles & \frac{50.0}{12} & \frac{5.60}{1} & \frac{44.4}{16} \\ = 4.167 & = 5.60 & = 2.775 \\ \hline Mole ratio & \frac{4.167}{2.775} & \frac{5.60}{2.775} & \frac{2.775}{2.775} \\ \hline (divide through by smallest value) & = 1.50 & = 2.02 & 1.00 \\ \hline Double to get rid of .5 & 3.00 & 4.04 & 2.00 \\ \hline Round to Whole Number & 3 & 4 & 2 \\ \hline \end{array}$						
10b	C=O Carbonyl	The peak at 1710 cm ⁻¹ is caused by C=O within a carboxyl group.						
10c(i)	$C_3H_4O_2$	Heaviest peak is the original molecule: C3H4O3 = (3x12)+(4x1)+(2x16) = 36+4+32 = 72						
10c(ii)	[C₂H₃]⁺	Positive charge must be shown. C2H3 = (2x12)+(3x1) = 24+3 = 27						
10d	Structure shown:	Н Н О H—C=C—C—O—H						